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Abstract— The stability and potential building hazard arising from karstic cavities within the shallow limestone rock mass are a special feature of the 
urban environment in the city of Al Kharj (located in the south of Al Riyadh, Saudi Arabia). Numerical modeling analyses using FLAC2D , have been 
applied to determine the behavior of the rock mass layers above these randomly underground voids usually continuously under complex solicitation 
(water pressure, loading from new building at the surface and pre-existing voids). The modeling has been validated by using the geotechnical 
characteristics of shallow limestone which have taken based on the bibliography; initial strength parameters of the limestone were derived from 
laboratory testing also in the bibliography. These computer modeling analyses have been combined with the field observations and geotechnical testing. 
This paper describes the modeling FLAC2D being applied, the manner in which the results are used by Civil Engineers to design a type of a new 
building foundations above these underground voids. More field tests will be recommended as geophysical investigation in order to make a mapping 
allows to geo-referencing these shallow underground voids within the urban area. 

Index Terms— Limestone, underground voids, FLAC2D, Stability, Risk prevention of failure. 

——————————      —————————— 

2 INTRODUCTION 
l Kharj valley being located in the central region of 
Saudi Arabia in the south of Al Riyadh around 50 km, 
temperature variations in the last years with high 

winds give rise to unexpected heavy rains. In addition, in 
the recent years, the south of Al Riyadh (Al Kharj) is 
exposed to seasonal floods for example the flood during 
2003 which inundates the downstream area of Al Kharj 
valley by a great quantity of water and many difficulties 
have been indexed in the vicinity of urban areas closed the 
valley. In fact, Municipality of Al Kharj attached a great 
importance to fight against the unexpected underground 
voids in the future. It is a question to explain the behavior 
of these voids by numerical modeling under the buildings 
in Al Kharj city based on the geospatial data from satellite 
images. Since flooding is the most frequent natural disaster, 
the Municipality has been focusing its attention to Karst 
Hazard Mapping (KHM) as one of the priority tasks to be 
accomplished in order to avoid the failure and collapse 
damage closed the urban area at the downstream valley of 
Al Kharj.   
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The study using models in the case of underground voids, 
requires to admit hypothesis taking into account the 
ground complexity and to simplify it. In fact, we often work 
with two dimensions (plan deformation hypothesis (Hoek 
& Brown, 1980). To explain how the compression, tensile 
and shear stresses due to the loading on the surface can be 
induced up surface, a numerical continuous model has 
been proposed applying the finite difference method (Fast 
Lagrangian Analysis Continua (Itesca, 2005). This method is 
based on the numerical calculations adapted for rock mass 
(Piguet, 1990). In order to understand the phenomenon of 
karst in the sallow rock mass layers, we need to highlight 
the effect of natural (geological) and industrial (mining) 
processes that help to develop these underground 
horizontally and vertically. Among these phenomena we 
can evoke the following : 1 - Differential compacting 
(settling) : this uneven settling can cause cracks in the floor, 
walls and foundation of the structure, perhaps dramatically 
weakening the integrity the structure of building 
(Khaldaoui et al., 2011). 2 - Subsurface erosion (piping) : in 
areas where there has been a significant alteration in 
groundwater levels, either through displacement of natural 
rainfall, over-pumping of groundwater or pipe leakages, 
the soft sedimentary basement layer in karst areas can 
become eroded. This erosion can create large subsurface 
cavities, diminishing the structural support for a 
foundations of building (Fox & Wilson, 2010). 3 - Collapse 
sinkholes : a form when the basement rock supporting the 
soil above it becomes completely dissolved by water. The 
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soil then sits on a subsurface air bubble. Progressive 
erosion, the weight of absorbed water or the construction of 
a building above the affected area can cause the bridge of 
soil above the bubble to collapse completely. These can be 
minor, foundation damaging subsidence or enormous pits 
large enough to swallow a small town entirely (Hatzor et 
al., 2010). 4 - Hazards of karst topography : land where 
water soluble carbonate bedrock has resulted in the 
formation of sinkholes, caves and underground water flow 
can be said to be showing karst topography. The most 
common bedrocks involved in karst formation are  
limestone and dolostone (Epting et al., 2009). 
Study area : The study area is Al Kharj region in the south 
of Al Riyadh. This region is located in the western hill 
slopes of Al Kharj and can be reached Al Hota area in 
direction of Wadi Al Douasser about 100 km, which 
receives most of the south-west monsoon rainfall making 
the Wadi network basin vulnerable for frequent floods. Al 
Kharj valley watershed sets cover about 5,000 km2 and 
major land-use covers are soil and weaken shallow rocks 
mainly sand, silty sand, gravel and limestone as a bed rock 
substratum types affected by underground voids “karsts”. 
Geographically the basin lies between the 663341 m and 
750964 m E, and 2618055 m and 2693852 m N referring to 
W.G.S.-84 (World Geodetic System 1984) coordinate system 
and flows from a height of about 650 m above S.A.L.S. 
(Saudi Arabia Leveling System) (Fig. 1 & Fig. 2). The photos 
(Photo  1 & Photo 2) show the underground voids “Karsts” 
at shallow depth under the built zones. 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These underground voids can reach the surface according 
the many successive collapses according to the seepage 
water through the cracks and faults network and the 
mechanical behavior linked to natural stresses (Kheder, 

 
Fig. 1. Al Kharj region. 

 (LandSat7 Image from RSI-KACST*, 2014). 

*Research Space Institute-King Abdulaziz City for Sciences and 
Technology-Al Riyadh Saudi Arabia 

 

 
Fig. 2. Enlarged view of study area.  

(LandSat7 Image from RSI-KACST*, 2014). 

*Research Space Institute-King Abdulaziz City for Sciences and 
Technology-Al Riyadh Saudi Arabia 

 

 
Photo. 1. Underground void below heavy building (SAU*, 2010). 
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1996). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2 MATERIELS AND METHODS 
The finite differences method represents the oldest of the 
numerical techniques used to solve differential equations 
(Itasca, 2005). As for the resolution technique used to solve 
the set of algebraic equations set up, the finite differences 
method can not build a global stiffness matrix of the 
system, but to make local resolution stepper on an element 
and its near neighbors, the equations considered 
independent insofar as the calculation steps (time step) is 
sufficiently small so that the consequence of a result could 
not physically spread from one element to another during 
the computation step (Itasca, 2005). This process is called 
explicit resolution. To detail the principle, say that the finite 
difference method invokes the equation of movement to 
calculate velocities and displacements from stresses and 
forces (Fig. 3). From velocities, the deformation rate is 
calculated and new stresses are deduced. This set of 
operations is performed on a cycle (one step), in which the 
variables are assumed constant (one computed velocities, 
they remain constant during a cycle until they are 
computed again). This is to validate this hypothesis 
consistently than the time step must be chosen small 
enough so that a change of magnitude elsewhere in the 
system "did not have time" to spread its effects until the 
element considered (Itasca, 2005). The main advantage of 
the finite difference method on other numerical methods 

(Finite Element Method (FEM) for example) lies in the 
simplicity it presents to the introduction of laws of 
nonlinear behavior, and thus allow, without effort 
significant programming to model large displacements. 
FlAC2D is the software using the finite differences method 
that we used. The general calculation sequence embodied 
in FLAC2D software is illustrated in Fig. 4. This procedure 
first invokes the equations of motion to derive new 
velocities and displacements from stresses and forces. Then, 
strain rates are derived from velocities, and new stresses 
from strain rates (Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Within this model based on finite difference method, the 
initial stresses estimation before making underground 
voids depend strongly on limit boundary conditions of the 
model. However, to minimize the boundary effect, the 
dimensions of the model must be 5 to 10 times the interest 
zone. In this case the width of one underground void in 
cross section is 1 m (Fig. 5). To take into account the 
symmetry of the underground voids, one half of the model 
has been undertaken. In the bottom  of this model, the 
vertical displacements are nulls. On the lateral limits and 
for the reason of symmetry of model, the horizontal 
displacements are too nulls. To better explain the stresses 
state within the rock mass, a phase by phase simulation has 
been done. In a first model, we estimate the initial stresses 
without the underground voids (phase of materials 
consolidation). After that, we simulate the effect of 
underground voids and at the same time we cancel the 
displacement received at the time of consolidation and 
reinitialize the stresses. 
 
 
 
 

 
Fig. 3. Basic explicit calculation cycle in FLAC2D (Itasca, 2005). 

 

 
Photo 2. Underground voids below heavy building (SAU*, 2010). 
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This method of calculation phase allows to predict areas of 
the model with exaggerated stresses (Kheder, 1996). Table 1 
shows a reference geotechnical characteristics of materials 
and shallow layers introduced within the model 
(Goodman, 1989). 
 
Table 1 : Reference geotechnical characteristics of shallow 

rock mass layers. 
 
Layers 

γ1 
 (kN/m3) 

C2 
 (MPa) 

ϕ3 
 (°) 

Rc4  
(MPa) 

Rt5 
 (MPa) 

      
Limestone1 20 0.30 35 5.0 0.50 
Limestone2 25 0.50 35 10.0 1.00 
Limestone3 25 0.50 35 15.0 1.50 

1: Unit weight; 2: Cohesion; 3: Friction angle; 4: Compressive 

strength; 5: Tensile strength. 

The present 2D model will be performed four underground 
voids (two voids by symmetry) below a static loading 
(Pmin=108 KN/m2) on three layers of limestone rock mass. 
Based on the deformation plane hypothesis, the appropriate 
boundary conditions are presented on the Fig. 5. 
(Goodman, 1989). The dimensions of these underground 
voids are assumed 1 m and having a circular form (Photo 1 
& Photo 2). Before applying the static load, the first phase is 
to build the model by applying a gravity load. Due to the 
symmetry of the model, the DFM grid is done only for the 
half of the structure. Horizontally and vertically, the size of 
the elements gradually decrease towards the area of interest 
which is localized at the base of the first layer of limestone. 
For this model we assume that the vertical displacements 
are zero in the bottom of it and on the each lateral side the 
horizontal displacements are also zero. Using successive 
calculations, we found that for 50 m by 50 m as dimension 
of this model (25 times the dimension of the underground 
void vertically and horizontally) the fields of stresses, 
displacements and strains are converging. That is to say if 
these dimensions are increased, the results do not change 
much (Fig. 9).     

3 RESULTS AND DISCUSSIONS 
In order to understand the behavior of these underground 
voids, we focus around these voids vertically and 
horizontally. In this sense, we look at the main and shear 
stresses variation within the roof and pillar between the 
voids. Three phases have been performed in this model 
(Fig. 6, Fig. 7 & Fig. 8). The first phase initializes the 
consolidation before opening the underground voids. The 
second phase introduces the first underground void in the 
model after consolidation and the third one creates the 
second underground void. The main stresses around the 
interest zone have been estimated within the model where 

 
Fig. 5. 2D model and boundary conditions. 
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Fig. 4. General solution procedure using FLAC2D (Itasca, 2005). 
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we see increasing the tensile and compression stresses 
around the underground voids (Fig. 9). A details 
concerning the magnitude of main and shear stresses have 
been indicated around these underground voids (Fig. 10, 
Fig. 11, Fig.12 & Fig.13). After opening the first 
underground void, horizontally the main stress in 
compression has became around 1000 kN/m2 and an 
important shear stress increasing especially within the 
pillar between the underground voids 400 kN/m2. Above 
this underground void tensile tresses have been developed, 
about 200 kN/m2 (Fig. 14). After opening the second 
underground void, also horizontally the main stress in 
compression has became around 1200 kN/m2 and more an 
important shear stress increasing especially within the 
pillar between the underground voids reaching 1200 kN/m2 
near the first void and 1100 kN/m2 around the second one. 
Around these underground voids tensile tresses are 
reached more than 400 kN/m2 on the first underground 
void (Fig. 15). After opening the first underground void, 
vertically in the roof at the level of the first pillar, the main 
stress in compression has became around 3000 kN/m2 and 
an important shear stress increasing especially within the 
pillar reaching about 1000 kN/m2 (Fig. 16). After opening 
the second underground void, vertically in the roof at the 
level of the second pillar, the main stress in compression 
has became around 5000 kN/m2 and an important shear 
stress increasing especially within the pillar reaching about 
2000 kN/m2 (Fig. 17). After opening the first underground 
void, vertically within the first pillar, the main stress in 
compression has became more than 1500 kN/m2 and the 
shear stress can reach about 400 kN/m2 (Fig. 18). After 
opening the second underground void, vertically within the 
second pillar, the main stress in compression has became 
around 2700 kN/m2 and an important shear stress reachs 
500 kN/m2 (Fig. 19). To compare the stresses before and 
after opening underground voids, we observe a minimum 
value of shear stresses around 25 kN/m2 under the uniform 
loading involved by the building at the surface after the 
consolidation phase and before opening the first 
underground void. Before opening the second 
underground void the shear stress can reach 400 kN/m2 and 
an important shear stress increasing especially within the 
pillar between the underground voids. After opening the 
second underground void the shear stress becomes around 
1200 kN/m2 and an important shear stress increasing 
especially within the pillar between the underground voids 
(Fig. 20). The interaction between the static loading surface  
and the degradation (water infiltration from the surface and 
the stresses redistribution around the underground voids 
and so on…)  due to the time around the underground 
voids allow to classify the interest zone around the 
underground voids in two zones : 1 – the first one above the 
underground voids where a tensile stress can be 

propagated toward the surface. 2 – the second under static  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Whole grid model before opening underground voids. 

 

 
Fig. 7. Whole grid model after opening one underground void. 

 

 
Fig. 8. Whole grid model after opening two underground voids. 
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Fig. 14. Main and shear stresses after opening one underground void 

in the pillar (horizontally). 
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Fig. 9. Main stresses after opening two underground voids. 

 

 
Fig. 10. Zoom model with main stresses before opening underground 

voids. 

 

 

 
Fig. 11. Zoom grid model with main stresses after opening one 

underground void. 

 

 
Fig. 12. Zoom grid model with main stresses after opening voids. 

 

 
Fig. 13. Zoom grid model with shear stresses contours  after opening 

underground voids. 
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Fig. 15. Main and shear stresses after opening two underground voids in 

the pillars (horizontally). 
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Fig. 16. Main and shear stresses after opening one underground void in 

the roof (first pillar vertically). 
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Fig. 17. Main and shear stresses after opening two underground voids in 

the roof (second pillar vertically). 
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Fig. 18. Main and shear stresses after opening one underground void 

in the first pillar (vertically). 
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Fig. 19. Main and shear stresses after opening two underground voids 

in the second pillar (vertically). 
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Fig. 20. Comparison of main and shear stresses before and after 

opening underground voids in the roof (horizontally). 
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loading and between the underground voids which allows 
to develop a zone of failure between the building and these 
underground voids in long term within the limestone layer 
1 (Fig. 21). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 CONCLUSIONS 
According to 2D modeling using FLAC 5.0, an important 
results have been found within the interest zone (limestone 
layer 1) where many underground voids have been 
investigated at shallow locations under heavy building. We 
found in term of stresses (tensile, compression and shear) 
different future zones of failure around these underground 
voids within the limestone layer1. We observe toward two 
main directions (horizontally and vertically) an excessive 
increasing of stresses : 1 – Horizontally, after opening the 
second underground void, the main stress in compression 
increases significantly and more an important shear stress 
increasing especially within the pillar between the 
underground voids. Around these underground voids 
tensile stresses have been developed on the first 
underground void. 2 – Vertically, after opening the second 
underground void, within the roof at the level of the second 
pillar, the main stress in compression reaches a maximum 
value (5000 kN/m2) and an important shear stress 
increasing especially within the pillar reaching 2000 kN/m2. 
To compare the stresses before and after opening 
underground voids, we observe a minimum value of shear 
stresses under the static loading involved by the building at 
the surface after the consolidation phase and before 
opening the first underground void. After opening the 
second underground void an important shear stress 

increasing especially within the pillar between the 
underground voids. In order to investigate and fill all the 
underground voids in the shallow layers of soil and rock 
mass a geophysical study will be undertaken according to 
the present results given. A civil engineering study will be 
required in order to choose the optimum methods and 
materials used for good stability of these shallow 
underground voids. 
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